Chemistry Lab

Exam

Booklet

1

April 23rd, 2022

State Tournament

PART – 2 of 2

Instructions: This exam consists of a set of experiments based on oxidation-reduction reactions and aqueous solutions worth 100 points and a multiple choice exam worth 100 points (200 points total).

Students may NOT write on the Experiment or Exam Booklet. Students may only mark on their answer sheets. RedOX - Questions 1 to 50, Properties of Solutions - Questions 51 to 100.

The "grade and team ranking" for this exam will be based on TOTAL POINTS out of 200 POSSIBLE POINTS. Be strategic, figure out the way that you and your team can bank as many points as possible in the time given. Place the answers to the lab experiments and multiple choice exam on the provided answer sheets. Answers not placed on the answer sheet will not be scored.

Ties will be broken by first the quality, accuracy, and completeness of the **experimental data and results**, followed by (if necessary) **selected multiple choice problems**.

Potentially Useful Information:

 $C_1 \cdot V_1 = C_2 \cdot V_2$ $pH = -\log [H_3O^+]$

Strong Acid	ls (Strong Electrolytes)	Soluble Str	ong Bases
HCl (aq)	Hydrochloric acid	LiOH	Lithium hydroxide
HBr (aq)	Hydrobromic acid	NaOH	Sodium hydroxide
HI (aq)	Hydroiodic acid	кон	Potassium hydroxide
HNO ₃	Nitric acid	Ba(0H) ₂	Barium hydroxide
HClO ₄	Perchloric acid		
H_2SO_4	Sulfuric acid		
Weak Acids	(Weak Electrolytes)*	Weak Base	(Weak Electrolyte)
H ₃ PO ₄	Phosphoric acid	NH ₃	Ammonia
H ₂ CO ₃	Carbonic acid		
CH₃CO₂H	Acetic acid		
$H_{2}C_{2}O_{4}$	Oxalic acid		
H ₂ C ₄ H ₄ O ₆	Tartaric acid		
$H_3C_6H_5O_7$	Citric acid		
HC ₉ H ₈ O ₄	Aspirin		

C Brooks/Cole, Cengage Learning

$$aA + bB \rightarrow cC + dD$$

$$\mathbf{E} = \mathbf{E}^{\circ} - \frac{\mathbf{R} \cdot \mathbf{T}}{\mathbf{n} \cdot \mathbf{F}} \cdot \ln \left(\frac{[\mathbf{C}]^{\mathsf{c}} \cdot [\mathbf{D}]^{\mathsf{d}}}{[\mathbf{A}]^{\mathsf{a}} \cdot [\mathbf{B}]^{\mathsf{b}}} \right)$$

E is the adjusted voltage of the cell

E° is the standard voltage of the cell

R is the ideal gas constant = 8.314 J/(K·mol)

T is the cell temperature in K

n is the number of moles of electrons transferred in the balance reaction

F is the Faraday constant = $9.649 \times 10^4 \text{ J/(V·mol)}$

$$\mathbf{E} = \mathbf{E}^{\circ} - \frac{\mathbf{0.0592}}{\mathsf{n}} \cdot \mathsf{log}\!\left(\frac{[\mathsf{C}]^{\mathsf{c}} \cdot [\mathsf{D}]^{\mathsf{d}}}{[\mathsf{A}]^{\mathsf{a}} \cdot [\mathsf{B}]^{\mathsf{b}}}\right)$$

Solid metal electrodes are assumed to have a concentration of 1

Salts of NH4⁺ and the alkali metal cations

Acid form when combined with H⁺

Alkali metal hydroxides and Ba(OH)2

hypochlorite ion

chlorite ion

chlorate ion

perchlorate ion

chromate ion

dichromate ion

permanganate ion

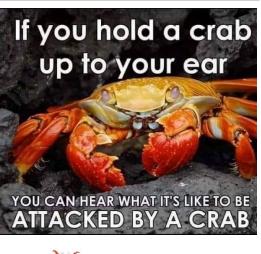
Phase boundary

Based on a Group 7A element

Fluorides of Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺

DO NOT MARK ON THIS QUESTION BOOKLET

								D	JNC		AKK	ON	IHIS	QUESTION BOOKLET		
	+	i ole	<u>Br</u>	등	04 ble	0 <u>3</u> ble	비	04 ble	0 <u>3</u>	K 03	SI. N	iO_3 ble	0 %	Soluble Compounds]	
	Ŧ	<u>HI</u> soluble	<u>HBr</u> soluble	<u>HCI</u> soluble	H ₂ SO ₄ soluble	HNO ₃ soluble	HE soluble	H ₃ PO ₄ soluble	H ₂ SO ₃	H ₂ CO ₃	H ₂ S low	<u>H2SiO3</u> insoluble	H ₂ O soluble	Almost all salts of Na ⁺ , K ⁺ , NH ₄ ⁺		
	Fe ³⁺	<u>Fel3</u> soluble	<u>FeBr3</u> soluble	EeCl <u>3</u> soluble	<u>Fe2(SO4)3</u> soluble	<u>Fe(NO_3)3</u> soluble	<u>FeF</u> <u>3</u> low	EePO4	$\frac{\text{Fe}_2(SO_3)_3}{\text{not exist}}$	$\frac{\text{Fe}_2(\text{CO}_3)_3}{\text{not exist}}$	<u>Fe2S3</u> not exist	$\frac{\text{Fe}_2(\text{SiO}_3)_3}{\text{not exist}}$	<u>Fe(OH)_3</u> insoluble	Salts of nitrate, NO₃ [−] chlorate, ClO₃ [−]		
	cr ³⁺	<u>Crl</u> 3 <u>soluble</u>	<u>CrBr₃</u> soluble	CrCl <u>3</u> soluble	Cr2(SO4)3 I	Cr(NO3)3 soluble	<u>CrF</u> 3 soluble	CrPO4 insoluble	Cr ₂ (SO ₃) ₃ I	Cr2(CO3)3 F	<u>Cr23</u> not exist	Cr2(SiO3)3 E	<u>Cr(OH)3</u> insoluble	perchlorate, CIO_4^- acetate, $CH_3CO_2^-$		
					_			<u> </u>							Exceptio	
	Al ³⁺	<u>All</u> <u>3</u> soluble	<u>AIBr₃</u>	AICI ₃ soluble	$\frac{\underline{Al}_2(\underline{SO}_4)_3}{\underline{soluble}}$	<u>AI(NO_3)3</u> soluble	<u>AIF</u> ₃	AIPO ₄ insoluble	$\frac{\underline{A }_2(\underline{SO}_3)_3}{\underline{not\ exist}}$	$\frac{\mathrm{Al}_2(\mathrm{CO}_3)_3}{\mathrm{notexist}}$	<u>Al₂S₃</u> not exist	<u>Al2(SiO_3)3</u> not exist	<u>Al(OH)_</u> insoluble	Almost all salts of Cl ⁻ , Br ⁻ , I ⁻	Halides of Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁻	
						_						<u> </u>		Salts containing F	Fluorides of Mg ²⁺ , Ca ²⁺ , S	r ²⁺ , Ba ²⁻
	Hg ²⁺	<u>Hgl2</u> insoluble	Hg <u>Br</u> 2 low	HgCl ₂ soluble	HgSO4	Hg(NO3)2 soluble	<u>HgE2</u> not exist	Hg_3(PO_4)2 insoluble	<u>HgSO3</u> notexist	<u>HgCO3</u> not exist	<u>Hg S</u> insoluble	<u>HgSiO_3</u> notexist	<u>Hg(OH)_2</u> not exist	Salts of sulfate, $SO_4^{2^-}$	Sulfates of Ca ²⁺ , Sr ²⁺ , Ba ²⁺	⁺ , Pb ²⁺
	Pb ²⁺	Pbl ₂ Iow	PbBr ₂ Iow	PbCl ₂	Pb SO 4	Pb(NO ₃)2 soluble	PbE2 low	<u>Pb₃(PO₄)₂</u> insoluble	PbSO3 insoluble	PbCO3 insoluble	PbS insoluble	<u>PbSiO3</u> insoluble	<u>Pb(OH)2</u> insoluble	Insoluble Compounds	Exceptio	
	đ	ш -	리 -		민희	_	<u>с</u>] –		<u>P</u>	<u>P</u>	u și	<u>a</u> S		Most salts of carbonate, CO ₃ ²⁻ phosphate, PO4 ³⁻	Salts of NH4 ⁺ and the alka	li metal
	Zn ²⁺	Znl2 soluble	ZnBr ₂ soluble	ZnCl ₂ soluble	ZnSO ₄ soluble	Zn(NO ₃)2 soluble	<u>ZnF</u> ₂ soluble	<u>Zn₃(PO4)2</u> insoluble	ZnSO ₃	ZnCO3 insoluble	ZnS insoluble	ZnSiO ₃ insoluble	<u>Zn(OH)</u> ₂ insoluble	oxalate, $C_2 O_4^{2^-}$ chromate, $Cr O_4^{2^-}$	Acid form when combine	d with I
	t.	ist Isl	ir_2	<u>12</u>	le 4		ie		ist 03	୍ଧ କ	S ala	୍ଥ କ	<u></u> H) ₂	sulfide, S ²⁻		
	cu ²⁺	<u>Cul</u> 2 not exist	CuBr ₂ soluble	CuCl ₂ soluble	CuSO ₄	Cu(NO ₃)2 soluble	CuF ₂ soluble	<u>Cu₃(PO₄)2</u> insoluble	CuSO3 not exist	CuCO ₃ insoluble	<u>CuS</u> insoluble	CuSiO ₃ insoluble	<u>Cu(OH)2</u> insoluble		Alkali matal hydravidaa ay	nd DalC
	Ni ²⁺	<u>Nil</u> 2 soluble	<u>NiBr2</u> soluble	<u>NiCl</u> 2 soluble	NiSO4 soluble	<u>Ni(NO_3)2</u> soluble	<u>NiF_2</u> soluble	Ni3(PO4)2	<u>NiSO_3</u> insoluble	<u>NiCO_3</u> insoluble	<u>NiS</u> insoluble	<u>NiSiO_3</u> insoluble	<u>Ni(OH)2</u> insoluble	Most metal hydroxides, OH ⁻ and metal oxides, O ²⁻	Alkali metal hydroxides ar	nd Ba(C
	z	1 05	N	N S	N S		N 05		N S	N in	in a	<u>in</u> is		TABLE 2.4 Formulas and Names of Son	ne Common Polyatomic Ions	
	Co ²⁺	Col ₂ soluble	CoBr ₂ soluble	CoCl ₂ soluble	CoSO4 soluble	Co(NO ₃)2 soluble	CoF ₂ soluble	Co ₃ (PO ₄) ₂ insoluble	CoSO3 insoluble	CoCO3 insoluble	CoS insoluble	CoSiO ₃ insoluble	<u>Co(OH)2</u> insoluble	Formula Name	Formula	Name
			. Cl. al	21 41	-71 al		~							NH₄ ⁺ ammonium ion		
	Fe ²⁺	Fel ₂ soluble	FeBr ₂ soluble	EeCl ₂ soluble	Fe SO ₄	Ee(NO ₃) ₂ soluble	<u>FeF</u> 2	<u>Fe₃(PO₄)2</u> insoluble	FeSO ₃	FeCO ₃ insoluble	FeS insoluble	FeSiO3 insoluble	<u>Fe(OH)2</u> insoluble	ANIONS: Negative Ions Based on a Group 4A element	Based on a Group	7A eleme
			~	~	41							<u> </u>		CN ⁻ cyanide ion	C10-	hypoch
	Mn ²⁺	Mnl ₂ soluble	MnBr ₂ soluble	MnCl ₂ soluble	Mn SO ₄	Mn(NO3)2 soluble	MnF ₂	<u>Mn₃(PO₄)2</u> insoluble	<u>MnSO3</u> insoluble	<u>MnCO3</u> insoluble	<u>MnS</u> insoluble	<u>MnSiO3</u> insoluble	<u>Mn(OH)</u> 2 insoluble	CH ₃ CO ₂ ⁻ acetate ion CO ₃ ²⁻ carbonate ion	ClO ₂ - ClO ₃ -	chlorit chlorat
							_							HCO3 ⁻ hydrogen carbonate ion	ClO ₄ -	perchlo
	Ag ⁺	<u>Agl</u> insoluble	<u>AgBr</u> insoluble	<u>AgCI</u> insoluble	<u>A92504</u> low	<u>AgNO</u> 3 soluble	AgE	<u>Ag₃PO4</u> insoluble	<u>Ag₂SO₃</u> insoluble	<u>Ag₂CO₃</u> insoluble	<u>Ag2S</u> insoluble	<u>Ag₂SiO</u> 3 insoluble	<u>AgOH</u> not exist	(or bicarbonate ion) Based on a Group 5A element	Based on a transit	ion meta
	٩	<u>, 2</u>	ا <u>ت</u> ر –	- <u>a</u>		A si	- inj						직입	NO ₂ - nitrite ion	Cr04 ²⁻	chroma
	NH4	NH41 soluble	NH4Br soluble	NH ₄ CI soluble	(<u>NH4)2SO4</u> soluble	NH4NO3 soluble	<u>NH4</u> E soluble	(NH4)3PO4 soluble	(<u>NH4)2SO3</u> soluble	(<u>NH4)2CO3</u> soluble	(NH ₄) ₂ S soluble	(NH4)2SIO	NH ₄ OH soluble	NO3 ⁻ nitrate ion	Cr ₂ 0 ₇ ²⁻	dichroi
	ż	N Sol	N 105	N 105	(NH ₄	HN	N IS	(NH ₄	(NH ₄	(NH ₄	(NH Ios	II II	HN los	PO4 ³⁻ phosphate ion HPO4 ²⁻ hydrogen phosphate ion	Mn0₄ [−]	permar
	5+	12 16	<u>br</u> 2	<u>1</u> 2 Me	le 4	$\frac{2}{3}$	17	<u>Mg₃(PO4)2</u> insoluble	03	03	S ist	[] []	<u>H)2</u> ble	H ₂ PO ₄ dihydrogen phosphate ion		
	Mg ²⁺	<u>Mgl2</u> soluble	<u>MgBr2</u> soluble	MgCl ₂ soluble	MgSO ₄ soluble	Mg(NO3)2 soluble	<u>MgE</u> 2 Iow	<u>dg_(P</u> insolu	<u>MgSO3</u>	<u>MgCO3</u> low	<u>MgS</u> not exist	<u>MgSiO3</u> insoluble	<u>Mg(OH)2</u> insoluble	Based on a Group 6A element		
			OI at	2	-41		au @		-21-81			ഹില		OH ⁻ hydroxide ion SO3 ²⁻ sulfite ion		
•	ca ²⁺	Cal ₂ soluble	CaBr ₂ soluble	CaCl ₂ soluble	CaSO ₄	Ca(NO ₃) ₂ soluble	<u>CaF</u> 2 insoluble	Ca3(PO4)2 insoluble	CaSO3 insoluble	CaCO3 insoluble	CaS low	CaSiO3 insoluble	Ca(OH) ₂	SO_3^2 sufficient		
ater]	-						12,			- 1 - EI	_			HSO ₄ ⁻ hydrogen sulfate ion		
water) water))0g of w onment	Ba ²⁺	<u>Bal</u> 2 soluble	BaBr ₂ soluble	<u>BaCl2</u> soluble	Ba SO 4	Ba(NO ₃)2 soluble	<u>BaF</u> 2 Iow	<u>Ba₃(PO₄)₂ insoluble</u>	BaSO3 insoluble	BaCO3 insoluble	BaS soluble	<u>BaSiO3</u> Iow	Ba(OH)2 soluble	(or bisulfate ion)		
0g of 0g of oer 10 envir	+	비	문	그 웨	04	0 36 33	ш. »		0 <u>3</u>	0 <u>3</u>	ા શ	1 <u>0</u> 3	지 위	Sal	t bridge	
per 10 ber 10 0.01g ueous	г!+	Lil	LiBr soluble	LiCI soluble	Li ₂ SO ₄ soluble	LiNO ₃	LiF low	Li <u>3P04</u> low	Li2SO3 soluble	Li ₂ CO ₃ soluble	Li2 <u>S</u> soluble	<u>Li₂SiO₃</u>	LiOH soluble	Anode half-ce	ll Cathode half-	cell
an 1g to 1g p than (the aqu	Na ⁺	<u>Nal</u> soluble	<u>NaBr</u> soluble	<u>NaCI</u> soluble	<u>Na2SO4</u> soluble	<u>NaNO</u> 3 soluble	<u>NaF</u> soluble	<u>Na3PO4</u> soluble	<u>Na2SO3</u> soluble	<u>Na₂CO₃ soluble</u>	<u>Na2S</u> soluble	<u>Na2SiO3</u> soluble	<u>NaOH</u> soluble		\neg	-
ore th 0.01g (less ist in	2	5	- 3	- 51	N M	Z] 01	. vi]	N N	N M	N M	-		∠ ĭi	$\operatorname{Zn}(s) \operatorname{Zn}^{2+}(a) $	q) $\ $ Cu ²⁺ (<i>aq</i>) $ $ Cu(<i>s</i>)	s)
soluble - soluble (more than 1g per 100g of water) low - low solubility (0.01g to 1g per 100g of water) insoluble - insoluble (less than 0.01g per 100g of water) not exist - do not exist in the aqueous environment	⁺ ¥	<u>KI</u> <u>soluble</u>	KBr soluble	KCI soluble	K2SO4 soluble	KNO3 soluble	<u>KF</u> soluble	K ₃ PO ₄ soluble	K2SO3 soluble	K2CO3 soluble	<u>K2</u> S soluble	K2SiO3 soluble	KOH soluble	Phase boundary Electrons	flow this way P	'hase l
le - sol ow sol ble - ii ist - d		<u>-</u>	Br.	с.	04 ²⁻	NO ₃ -	i.	04 ³⁻	so ₃ ²-	0 ₃ 2-	s²-	sio ₃ 2-	-но			
soluble - low - low insoluble not exist					ŝ	ž		P 0	so	8		sio				
월 요 .드 원														l		3


M.Ray

											Ŭ					••••		~ ~
18 H elium 4 .0026	10 10	Ne	Argon 18	Ar	39.948 Krypton	8	Ŗ	83.798(2)	Xenon 54	Xe	131.29	Radon 86	R	[222.02]	118			
1	Fluorine 9	L	Chlorine	ບັ	35.45 Bromine	8	ይ	79.904	lodine 53 ee		126.90	Astatine 85	At	[209.99]	117	Uus		14
16	Oxygen 8	0,	Sulfur 16	S	32.06 Selenium	\$	Se	78.96(3)	Tellurium 52	H	127.60(3)	Polonium 84	P 0	[208.98]	116			Ytterbium 70
15	Nitrogen 7	2	Phosphorus 15	L	30.974 Arsenic	R	As	74.922	Antimony 51	S b	121.76	Bismuth 83	ï	208.98	115	Uup		Thulium 69
14	Carbon 6	U	Silicon	Si	28.085 Germanium	32	9 0 0	72.63	≓ 23	Sn	118.71	Lead 82	Bb	207.2	114			Erbium 68
13	Boron 5	m :	Aluminium 13	A	26.982 Gallium	3	Ga	69.723	49 49	<u>_</u>	114.82	Thallium 81	F	204.38	113	Uut		Holmium 67
5					Zinc	8	Zn	65.38(2)	Cadmium 48	В	112.41	Mercury 80	Hg	200.59	ucopernicium	C B		Dysprosium 66
£					Copper	29	Cu	63.546(3)	Silver 47	Ag	107.87	Gold 79	Au	196.97	Hoemgenium	Rg 280.16		Terbium 65
₽					Nickel	28	Ż	58.693	Palladium 46	Pd	106.42	Platinum 78	ፈ	195.08	110	DS 281.16		Gadolinium 64
o					Cobalt	27	ပိ	58.933	Abodium 45	R	102.91	Iridium 77	<u>-</u>	192.22	109	Mt P76.15		Europium 63
ω					lron	26	Ъ С	55.845(2)	Ruthenium 44	Bu	101.07(2)	Osmium 76	So	190.23(2)	108	HS BT.15		Samarium 62
2			_					_			_			_		Bh		Promethium 61
G	er	0	linve mass)		Chromium	24	ັບ	51.996	Malybdenum 42	No	95.96(2)	Tungsten 74	≥	183.84	106	Sg		
ى ب	Element Name Atomic number	Symbo	Atomic weight (mean relative mass)		Vanadium	ន	>	50.942	Niobium 41	qN	92.906(2)	Tantalum 73		_		Db PBB-13	1	Praseodymium Neody 59 6
Key:	At	S	Atomic we		Titanium	ដ	F	47.867	Zirconium 40	Z	91.224(2)	Hafnium 72	Ŧ	178.49(2)	HUTHEFTORGIUM 104			Cerium 58
n			- 1.5°		Scandium	21	Sc	44.956	Yttrium 39	>	88.906	Lutetium 71		174.97	103	[262,11]		Lanthanum 57
												57-70	*		89-102	**		
N	Beryllium 4	Be	aurizz Magnesium 12	Mg	24.305 Calcium	2	Ca	40.078(4)	Strontium	ې ک	87.62	Barium 56	Ba	137.33	88 88	Pae.03		
Hydrogen 1.008	Lithium 3		Sodium	Na	22.990 Potassium	19	×	39.098	Rubidium 37	Bb	85.468	Caesium 55	S	132.91	87			

	Lanthanum	Cerium		Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	
	57	28		09	61	62	83	64	65	99	67	89	69	2	
*lanthanoids	Га	0 O		PZ	БВ	Sm	Eu	B d	q	2	Ŷ	ш	Tm	٩	
	138.91	140.12		144.24	[144.91]	150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05	
	Actinium	Thorium		Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	
	68	6		92	93	8	95	96	97	86	66	<u>6</u>	ē	<u>1</u> 02	
**actinoids	Ac	Ac Th	Pa	D	aN	Ъ	Am	S	Ř	Ⴆ	ВS	E	ΡW	°N	
	[227.03]	232.04		238.03	[237.05]	[244.06]	[243.06]	[247.07]	[247.07]	[251.08]	[252.08]	[257.10]	[258.10]	[259.10]	
		ĺ													
\$							- 2	Co S2 ⁽ F2	Sn Cu Ag	Pb 2H	Co Ni Sn	Cr Fe Cc	M Al Zr	Ca Na	K⁺
5			Y	P		and the second se) ³	1 ²	,2- [+) ²⁺ 2+	2+	3+	1 ^{2.}	6

Standard Electrode Potentials
in Aqueous Solution at 25°C

Cathode (Reduction) Half-Reaction	Standard Potential E° (Volts)
$Li^+(aq) + e^- \leftrightarrow Li(s)$	-3.04
$K^+(aq) + e^- \leftrightarrow K(s)$	-2.92
$Ca^{2+}(aq) + 2e^{-} \leftrightarrow Ca(s)$	-2.76
$Na^+(aq) + e^- \leftrightarrow Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^- \leftrightarrow Mg(s)$	-2.38
$Al^{3+}(aq) + 3e^- \leftrightarrow Al(s)$	-1.66
$Zn^{2+}(aq) + 2e^- \leftrightarrow Zn(s)$	-0.763
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \leftrightarrow \operatorname{Cr}(s)$	-0.744
$Fe^{2+}(aq) + 2e^- \leftrightarrow Fe(s)$	-0.440
$Cd^{2+}(aq) + 2e^{-} \leftrightarrow Cd(s)$	-0.403
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^- \leftrightarrow \operatorname{Co}(s)$	-0.277
$Ni^{2+}(aq) + 2e^- \leftrightarrow Ni(s)$	-0.250
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \leftrightarrow \operatorname{Sn}(s)$	-0.136
$Pb^{2+}(aq) + 2e^- \leftrightarrow Pb(s)$	-0.126
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \leftrightarrow \mathrm{H}_{2}(\mathrm{g})$	0.000
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \leftrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	0.15
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \leftrightarrow \mathrm{Cu}(\mathrm{s})$	0.337
$Ag^+(aq) + e^- \leftrightarrow Ag(s)$	0.799
$\operatorname{Co}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \leftrightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	1.82
$S_2O_8^{2-}(aq) + 2e^- \leftrightarrow 2SO_4^{2-}(aq)$	2.01
$F_2(g) + 2e^- \leftrightarrow 2F^-(aq)$	2.87

4 University of Wisconsin-Stout

MULTIPLE CHOICE EXAM (100 Points)

Multiple Choice Answers must be placed on Answer Sheet provided.

Multiple Choice is scored as: TOTAL POINTS

OXIDATION REDUCTION (REDOX) REACTIONS

20.1 Oxidation-Reduction Reactions

 Assuming the following reaction proceeds in the forward direction, 2 Ni²⁺(aq) + Zn(s) → 2 Ni(s) + Zn²⁺(aq)
 a) Ni²⁺(aq) is the reducing agent and Zn(s) is the oxidizing agent.
 b) Zn(s) is the reducing agent and Ni(s) is the oxidizing agent.
 c) Ni²⁺(aq) is the reducing agent and Ni(s) is the oxidizing agent.
 d) Zn(s) is the reducing agent and Zn²⁺(s) is the oxidizing agent.
 e) Zn(s) is the reducing agent and Ni²⁺(s) is the oxidizing agent.

2. The following reaction occurs spontaneously. 2 H⁺(aq) + Sr(s) \rightarrow Sr²⁺(aq) + H₂(g) Write the balanced reduction half-reaction. a) 2 H⁺(aq) + 2 e⁻ \rightarrow H₂(g) b) 2 H⁺(aq) \rightarrow H₂(g) + 2 e⁻ c) H₂(g) \rightarrow 2 H⁺(aq) + 2 e⁻ d) Sr(s) + 2 e⁻ \rightarrow Sr²⁺(aq) e) Sr(s) \rightarrow Sr²⁺(aq) + 2 e⁻

3. Write a balanced half-reaction for the reduction of hydrogen peroxide to water in an acidic solution. a) 2 H₂O₂(l) \rightarrow 2 H₂O(l) + O₂(g) b) 2 H₂O₂(l) + 2e⁻ \rightarrow 2 H₂O(l) + O₂(g) c) H₂O₂(l) + 2 H⁺(aq) + 2e⁻ \rightarrow 2 H₂O(l) d) H₂O₂(l) + 4 H⁺(aq) + 2e⁻ \rightarrow 2 H₂O(l) + H₂(g) e) H₂O₂(l) + 2 H⁺(aq) + 4e⁻ \rightarrow 2 H₂(g) + O₂(g)

4. Write a balanced half-reaction for the reduction of $MnO_2(s)$ to $Mn(OH)_2(s)$ in a basic solution. a) $MnO_2(s) + 2 OH^{-}(aq) + 2 e^{-} \rightarrow Mn(OH)_2(s) + O_2(g)$ b) $MnO_2(s) + 2 H^{+}(aq) + 2 e^{-} \rightarrow Mn(OH)_2(s)$ c) $MnO_2(s) + 2 H^{+}(aq) \rightarrow Mn(OH)_2(s) + 2 e^{-}$ d) $MnO_2(s) + 2 H_2O(1) + 2 e^{-} \rightarrow Mn(OH)_2(s) + 2 OH^{-}(aq)$ e) $MnO_2(s) + 2 OH^{-}(aq) \rightarrow Mn(OH)_2(s) + O_2(g)$

5. Write a balanced chemical equation for the following reaction in an acidic solution. $MnO_4^{-}(aq) + Fe(s) \rightarrow Mn^{2+}(aq) + Fe^{2+}(aq)$ a) $2 MnO_4^{-}(aq) + 5 Fe(s) + 16 H^+(aq) \rightarrow 2 Mn^{2+}(aq) + 5 Fe^{2+}(aq) + 8 H_2O(l)$ b) $MnO_4^{-}(aq) + Fe(s) + 16 H^+(aq) \rightarrow Mn^{2+}(aq) + Fe^{2+}(aq) + 8 H_2O(l)$ c) $MnO_4^{-}(aq) + Fe(s) \rightarrow Mn^{2+}(aq) + Fe^{2+}(aq) + 4 H_2O(l)$ d) $2 MnO_4^{-}(aq) + Fe(s) + 16 H^+(aq) \rightarrow 2 Mn^{2+}(aq) + Fe^{2+}(aq) + 8 H_2O(l)$ e) $MnO_4^{-}(aq) + 5 Fe(s) + 16 H^+(aq) \rightarrow Mn^{2+}(aq) + 5 Fe^{2+}(aq) + 8 H_2O(l)$

6. Write a balanced chemical equation for the oxidation of $Fe^{2+}(aq)$ by concentrated nitric acid. Two products of the reaction are NO(g) and $Fe^{3+}(aq)$.

a) $HNO_3(aq) + Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + NO(g) + HO_2(l)$ b) $HNO_3(aq) + 3 Fe^{2+}(aq) \rightarrow 3 Fe^{3+}(aq) + NO(g) + HO_2(l)$ c) $2 HNO_3(aq) + 2 Fe^{2+}(aq) + 6 H^+(aq) \rightarrow 3 Fe^{3+}(aq) + 2 NO(g) + 4 H_2O(l)$ d) $4 HNO_3(aq) + 3 Fe^{2+}(aq) \rightarrow 3 Fe^{3+}(aq) + NO(g) + 2H_2O(l) + 3 NO_3^-(aq)$ e) $HNO_3(aq) + Fe^{2+}(aq) \rightarrow 3 Fe^{3+}(aq) + NO(g)$

7. Write a balanced chemical equation for the following reaction in a basic solution. $ClO^{-}(aq) + Cr(OH)_{3}(s) \rightarrow Cl^{-}(aq) + CrO_{4}^{2-}(aq)$ a) $3 ClO^{-}(aq) + 2 Cr(OH)_{3}(s) + 4 OH^{-}(aq) \rightarrow 3 Cl^{-}(aq) + 2 CrO_{4}^{2-}(aq) + 5 H_{2}O(l)$ b) $ClO^{-}(aq) + Cr(OH)_{3}(s) + 3 OH^{-}(aq) \rightarrow Cl^{-}(aq) + CrO_{4}^{2-}(aq) + 3 H_{2}O(l)$ c) $2 ClO^{-}(aq) + 3 Cr(OH)_{3}(s) + 3 OH^{-}(aq) \rightarrow 2 Cl^{-}(aq) + 3 CrO_{4}^{2-}(aq) + 6 H_{2}O(l)$ d) $4 ClO^{-}(aq) + Cr(OH)_{3}(s) + 4 OH^{-}(aq) \rightarrow Cl^{-}(aq) + CrO_{4}^{2-}(aq) + 6 H_{2}O(l)$ e) $ClO^{-}(aq) + Cr(OH)_{3}(s) \rightarrow Cl^{-}(aq) + CrO_{4}^{2-}(aq) + 6 H_{2}O(l)$

8. All of the following statements concerning voltaic cells are true EXCEPT

a) a salt bridge allows cations and anions to move between the half-cells.

b) electrons flow from the anode to the cathode in the external circuit.

c) oxidation occurs at the cathode.

d) a voltaic cell can be used as a source of energy.

e) a voltaic cell consists of two-half cells.

9. What is the correct cell notation for a voltaic cell based on the reaction below? $Ag^{+}(aq) + Sn(s) \rightarrow Ag(s) + Sn^{2+}(aq)$ a) $Ag(s) | Ag^{+}(aq) | Sn^{2+}(aq) | Sn(s)$ b) $Sn(s) || Sn^{2+}(aq), Ag^{+}(aq) | Ag(s)$ c) $Ag(s) || Ag^{+}(aq), Sn^{2+}(aq) || Sn(s)$ d) $Ag(s) | Sn^{2+}(aq) || Ag^{+}(aq) | Sn(s)$ e) $Sn(s) | Sn^{2+}(aq) || Ag^{+}(aq) | Ag(s)$

10. Use the standard reduction potentials below to determine which element or ion is the best reducing agent.

11. Consider the following half-reactions:

 $E^{\circ} = -2.37 \text{ V}$ $Mg^{2+}(aq) + 2 e^{-} \rightarrow Mg(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $E^{\circ} = -1.66 \text{ V}$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $E^{\circ} = -0.44 \text{ V}$ $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \rightarrow \operatorname{Sn}(s)$ $E^{\circ} = -0.14 \text{ V}$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ $E^{\circ} = +0.34 \text{ V}$ Which of the above metals or metal ions will oxidize Fe(s)? a) $Cu^{2+}(aq)$ and $Sn^{2+}(aq)$ b) Cu(s) and Sn(s) c) $Al^{3+}(aq)$ and $Mg^{2+}(aq)$ d) Al(s) and Mg(s) e) Sn(s) and $Al^{3+}(aq)$

12. Given the following two half-reactions, write the overall reaction in the direction in which it is spontaneous and calculate the standard cell potential.

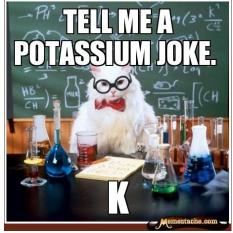
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	$E^{\circ} = -0.126 \text{ V}$
$Pb^{2+}(aq) + 2 e^{-} \rightarrow Pb(s)$ $Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$	$E^{\circ} = +0.337 \text{ V}$
a) $Pb^{2+}(aq) + Cu(s) \rightarrow Pb(s) + Cu^{2+}(aq)$	$E_{\rm cell}^{\rm o} = +0.463 \ {\rm V}$
b) $Pb^{2+}(aq) + Cu(s) \rightarrow Pb(s) + Cu^{2+}(aq)$	$E_{\rm cell}^{\rm o} = +0.211 {\rm V}$
c) $Pb(s) + Cu^{2+}(aq) \rightarrow Pb^{2+}(aq) + Cu(s)$	$E_{\rm cell}^{\rm o} = -0.211 {\rm V}$
d) $Pb(s) + Cu^{2+}(aq) \rightarrow Pb^{2+}(aq) + Cu(s)$	$E_{\rm cell}^{\rm o} = +0.463 {\rm V}$
e) $Pb(s) + Cu^{2+}(aq) \rightarrow Pb^{2+}(aq) + Cu(s)$	$E_{\rm cell}^{\rm o} = +0.926 {\rm V}$

13. Which of the following equations is a correct form of the Nernst equation?

a)
$$E = E^{\circ} - \left(\frac{RT}{nF}\right) \ln Q$$

b) $E = E^{\circ} + \log\left(\frac{RT}{nF}\right)$
c) $E = E^{\circ} - \left(\frac{nF}{RT}\right) \log Q$
d) $E^{\circ} = E - \left(\frac{RT}{nF}\right) \ln Q$
e) $E = E^{\circ} - \left(\frac{nF}{RT}\right) \ln Q$

14. A Faraday, F, is defined as


a) the charge on a single electron.

b) the charge, in coulombs, carried by one mole of electrons.

c) the voltage required to reduce one mole of reactant.

d) the moles of electrons required to reduce one mole of reactant.

e) the charge passed by one ampere of current in one second.

DO NOT MARK ON THIS QUESTION BOOKLET

15. Calculate the cell potential, at 25 °C, based upon the overall reaction 3 $Cr^{2+}(aq) + 2 Al(s) \rightarrow 3 Cr(s) + 2 Al^{3+}(aq)$ if $[Cr^{2+}] = 0.15 M$ and $[Al^{3+}] = 0.0040 M$. The standard reduction potentials are as follows: Al³⁺(aq) + 3 e⁻ \rightarrow Al(s) $Cr^{2+}(aq) + 2 e^{-} \rightarrow Cr(s)$ a) -2.64 V b) -0.75 V c) +0.44 V d) +0.73 V e) +0.77 V

16. Which factor will increase the measured cell potential of the following galvanic cell?
Pt | Sn⁴⁺(aq, 1.0 M), Sn²⁺(aq, 1.0 M) || Cu²⁺(aq, 0.200 M) | Cu
a) switching from a platinum to a graphite anode
b) increasing the size of the anode
c) decreasing the concentration of Cu²⁺
d) increasing the concentration of Sn⁴⁺

e) decreasing the temperature of the cell

17. What charge, in coulombs, is required to deposit 0.34 g Al(s) from a solution of Al³⁺(aq)? a) 4.1×10^2 C b) 3.6×10^3 C c) 7.2×10^3 C d) 3.3×10^4 C e) 9.8×10^4 C

18. What is the oxidation number of bromine in the BrO₃- ion?

A) -1

B) +1

C) +3

D) +5

E) +7

19. Which element is oxidized in the reaction below?

$$Fe^{+2} + H^{+} + Cr_{2}O7^{-2} \rightarrow Fe^{+3} + Cr^{+3} + H_{2}O$$

A) Fe B) Cr

C)O

D) H

20. Which element is reduced in the reaction below?

$$Fe^{+2} + H^+ + Cr_2O7^{-2} \rightarrow Fe^{+3} + Cr^{+3} + H_2O$$

A) Fe B) Cr

C) O

D) H

21. Which of the following reactions is a redox reaction?

(a) $K_2CrO_4 + BaCl_2 \rightarrow BaCrO_4 + 2KCl$ (b) $Pb_2^{2+} + 2Br^- \rightarrow PbBr$ (c) $Cu + S \rightarrow CuS$ A) (a) only B) (b) only C) (c) only

D) (a) and (c) E) (b) and (c)

22. Which one of the following reactions is a redox reaction?
A) NaOH + HCl → NaCl + H₂O
B) Pb²⁺ + 2Cl- → PbCl₂
C) AgNO₃ + HCl → HNO₃ + AgCl
D) None of the above is a redox reaction.

23. Which substance is the reducing agent in the following reaction? $Fe_2S_3 + 12HNO_3 \rightarrow 2Fe(NO_3)_3 + 3S + 6NO_2 + 6H_2O$

A) HNO₃ B) S C) NO₂ D) Fe₂S₃

E) H₂O

24. Which substance is the oxidizing agent in the following reaction? $Fe_2S_3 + 12HNO_3 \rightarrow 2Fe(NO_3)_3 + 3S + 6NO_2 + 6H_2O$

A) HNO₃
B) S
C) NO₂
D) Fe₂S₃

E) H₂O

25. What is the coefficient of the permanganate ion when the following equation is balanced?

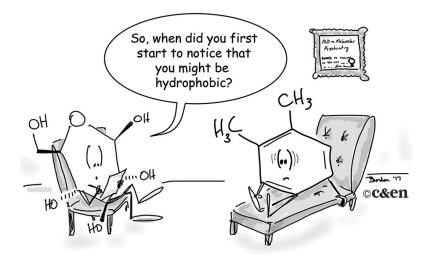
 $MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$ (acidic solution)

- A) 1
- B) 2
- C) 3
- D) 5
- E) 4

26. What is the coefficient of Fe³⁺ when the following equation is balanced? $CN^- + Fe^{3+} \rightarrow CNO^- + Fe^{2+}$ (basic solution)

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

27. The purpose of the salt bridge in an electrochemical cell is to _


A) maintain electrical neutrality in the half-cells via migration of ions.

B) provide a source of ions to react at the anode and cathode.

C) provide oxygen to facilitate oxidation at the anode.

D) provide a means for electrons to travel from the anode to the cathode.

E) provide a means for electrons to travel from the cathode to the anode.

DO NOT MARK ON THIS QUESTION BOOKLET

Table 20.1	
Half Reaction	E°(V)
$Li^+ + e^- \rightarrow Li(s)$	-3.05
$Ni^{2+} + 2e^- \rightarrow Ni(s)$	-0.28
$Pb^{2+} + 2e^- \rightarrow Pb(s)$	-0.126
$2\mathrm{H}^+ + 2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g})$	0
$Cu^{2+} + 2e^{-} \rightarrow Cu(s)$	+0.34
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+0.536
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.771
$Ag^{+} + e^{-} \rightarrow Ag(s)$	+0.799
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23
$\operatorname{Br}_{2}(l) + 2e^{-} \rightarrow 2\operatorname{Br}^{-}(\operatorname{aq})$	+1.065
$\operatorname{Cl}_{2}(g) + 2e^{-} \rightarrow 2\operatorname{Cl}^{-}(aq)$	+1.359
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87

28. Which of the halogens in Table 20.1 is the strongest oxidizing agent?

A) Cl₂

B) Br₂

- C) F₂
- D) I₂
- E) All of the halogens have equal strength as oxidizing agents.

Table 20.2	
Half-reaction	E° (V)
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
Fe^{2+} (aq) + 2e ⁻ \rightarrow Fe (s)	-0.440
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{s})$	+0.771

29. Which of the following reactions will occur spontaneously as written? A) $\operatorname{Sn}^{4+}(\operatorname{aq}) + \operatorname{Fe}^{3+}(\operatorname{aq}) \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Fe}^{2+}(\operatorname{aq})$ B) $\operatorname{3Fe}(\operatorname{s}) + 2\operatorname{Cr}^{3+}(\operatorname{aq}) \rightarrow 2\operatorname{Cr}(\operatorname{s}) + 3\operatorname{Fe}^{2+}(\operatorname{aq})$

- C) $Sn^{4+}(aq) + Fe^{2+}(aq) \rightarrow Sn^{2+}(aq) + Fe (s)$
- D) $3Sn^{4+}(aq) + 2Cr(s) \rightarrow 2Cr^{3+}(aq) + 3Sn^{2+}(aq)$
- E) $3Fe^{2+}(aq) \rightarrow Fe(s) + 2Fe^{3+}(aq)$

30. What is the anode in an alkaline battery?
A) MnO₂
B) KOH
C) Zn powder
D) Mn₂O₃
E) P(

E) Pt

31. What is the cathode in an alkaline battery?A) MnO₂B) KOHC) Zn powderD) Mn₂O₃

E) Pt

32. The gain of electrons by an element is called ______.
A) reduction
B) oxidation
C) disproportionation
D) fractionation
E) sublimation

33. _____ is the oxidizing agent in the reaction below. $Cr_2O_7^{2-} + 6S_2O_3^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 3S_4O_6^{2-} + 7H_2O$ A) $Cr_2O_7^{2-}$ B) $S_2O_3^{2-}$ C) H^+ D) Cr^{3+} E) $S_4O_6^{2-}$

34. _____ is the reducing agent in the reaction below.

$$Cr_{2}O_{7}^{2-} + 6S_{2}O_{3}^{2-} + 14H^{+} \rightarrow 2Cr^{3+} + 3S_{4}O_{6}^{2-} + 7H_{2}O_{6}^{2-}$$

A) $Cr_2O_7^{2-}$ B) $S_2O_3^{2-}$ C) H⁺ D) Cr^{3+} E) $S_4O_6^{2-}$

DO NOT MARK ON THIS QUESTION BOOKLET

- 35. What is the oxidation number of manganese in MnO_2 ?
- A) +3
- B) +2
- C) +1
- D) +4
- E) +7

36. The electrode at which oxidation occurs is called the ______.
A) oxidizing agent
B) cathode
C) reducing agent
D) anode
E) voltaic cell

37. The half-reaction occurring at the anode in the balanced reaction shown below is

 $3MnO_4^{-}(aq) + 24H^{+}(aq) + 5Fe(s) \rightarrow 3Mn^{2+}(aq) + 5Fe^{3+}(aq) + 12H_2O(l)$

A) MnO_4^- (aq) + $8H^+$ (aq) + $5e^- \rightarrow Mn^{2+}$ (aq) + $4H_2O$ (l) B) $2MnO_4^-$ (aq) + $12H^+$ (aq) + $6e^- \rightarrow 2Mn^{2+}$ (aq) + $3H_2O$ (l) C) Fe (s) $\rightarrow Fe^{3+}$ (aq) + $3e^-$ D) Fe (s) $\rightarrow Fe^{2+}$ (aq) + $2e^-$ E) Fe^{2+} (aq) $\rightarrow Fe^{3+}$ (aq) + e^-

38. The half-reaction occurring at the cathode in the balanced reaction shown below is ______.

 $3MnO_4^{-}(aq) + 24H^{+}(aq) + 5Fe(s) \rightarrow 3Mn^{2+}(aq) + 5Fe^{3+}(aq) + 12H_2O(l)$

A) MnO_4^- (aq) + $8H^+$ (aq) + $5e^- \rightarrow Mn^{2+}$ (aq) + $4H_2O$ (l) B) $2MnO_4^-$ (aq) + $12H^+$ (aq) + $6e^- \rightarrow 2Mn^{2+}$ (aq) + $3H_2O$ (l) C) Fe (s) $\rightarrow Fe^{3+}$ (aq) + $3e^-$ D) Fe (s) $\rightarrow Fe^{2+}$ (aq) + $2e^-$ E) Fe^{2+} (aq) $\rightarrow Fe^{3+}$ (aq) + e^-

39. In a voltaic cell, electrons flow from the ______ to the _____.
A) salt bride, anode
B) anode, salt bridge
C) cathode, anode
D) salt bridge, cathode
E) anode, cathode

Table 20.2

Half-reaction	E° (V)
$\mathrm{Cr}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Fe}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.440
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{s})$	+0.771

40. The standard cell potential (E°_{cell}) for the voltaic cell based on the reaction below is _____ V. Sn²⁺ (aq) + 2Fe³⁺ (aq) \rightarrow 2Fe²⁺ (aq) + Sn⁴⁺ (aq)

D) -0.46

E) +1.21

41. The standard cell potential (E°_{cell}) for the voltaic cell based on the reaction below is _____ V.

$$Cr(s) + 3Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq) + Cr^{3+}(aq)$$

A) -1.45 B) +2.99 C) +1.51 D) +3.05 E) +1.57

42. The standard cell potential (E°_{cell}) for the voltaic cell based on the reaction below is _____ V.

$$2Cr(s) + 3Fe^{2+}(aq) \rightarrow 3Fe(s) + 2Cr^{3+}(aq)$$

A) +0.30 B) +2.80 C) +3.10 D) +0.83 E) -0.16

DO NOT MARK ON THIS QUESTION BOOKLET

43. A voltaic cell is constructed with two silver-silver chloride electrodes, where the half-reaction is

AgCl (s) + $e^- \rightarrow Ag$ (s) + Cl⁻ (aq) $E^\circ = +0.222 \text{ V}$

The concentrations of chloride ion in the two compartments are 0.0222 M and 2.22 M, respectively. The cell emf is _____ V. A) 0.212 B) 0.118 C) 0.00222 D) 22.2 E) 0.232

44. The standard cell potential (E°_{cell}) for the reaction below is +0.63 V. The cell potential for this reaction is V when $[Zn^{2+}] = 3.5$ M and $[Pb^{2+}] = 2.0 \times 10^{-4}$ M.

$$Pb^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Pb(s)$$

A) 0.50 B) 0.84 C) 0.39 D) 0.76 E) 0.63

45. The standard cell potential (E°_{cell}) for the reaction below is +1.10 V. The cell potential for this reaction is _____ V when the concentration of [Cu^{2+}] = 1.0 × 10⁻⁵ M and [Zn^{2+}] = 3.5 M.

$$Zn(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Zn^{2+}(aq)$$

A) 1.42
B) 1.26
C) 0.94
D) 0.78
E) 1.10

46. The standard emf for the cell using the overall cell reaction below is +0.48 V:

 $Zn(s) + Ni^{2+}(aq) \rightarrow Zn^{2+}(aq) + Ni(s)$

The emf generated by the cell when $[Ni^{2+}] = 2.50$ M and $[Zn^{2+}] = 0.100$ M is _____ V. A) 0.40 B) 0.50 C) 0.52 D) 0.56 E) 0.44 47. In which species does sulfur have the highest oxidation number?

A) S₈ (elemental form of sulfur)

B) H_2S

C) SO₂

- D) H_2SO_3
- E) K₂SO₄

48. Sodium does not occur in nature as Na (s) because _____.

A) it is easily reduced to Na-

B) it is easily oxidized to Na⁺

C) it reacts with water with great difficulty

D) it is easily replaced by silver in its ores

E) it undergoes a disproportionation reaction to Na⁻ and Na⁺

49. Oxidation is the ______ and reduction is the ______.

A) gain of oxygen, loss of electrons

- B) loss of oxygen, gain of electrons
- C) loss of electrons, gain of electrons
- D) gain of oxygen, loss of mass
- E) gain of electrons, loss of electrons
- 50. Oxidation and ______ mean essentially the same thing.
 A) activity
 B) reduction
 C) metathesis
 D) decomposition
 E) corrosion

Cop: "You know how fast you were going?"

Albert Einstein: "Speed is relative officer"

M.Ray

AQUEOUS SOLUTIONS

- 51. If 8.19 g KIO₃ is dissolved in enough water to make 500.0 mL of solution, what is the molarity of the potassium iodate solution? The molar mass of KIO₃ is 214 g/mol.
 - a) 1.64×10^{-2} M b) 1.91×10^{-2} M
 - c) 7.65×10^{-2} M
 - d) 3.51 M
 - e) 16.4 M
- 52. If 5.15 g Fe(NO₃)₃ is dissolved in enough water to make exactly 150.0 mL of solution, what is the molar concentration of nitrate ion? a) 0.00319 M b) 0.0343 M c) 0.142 M d) 0.313 M e) 0.426 M
- 53. If 25.00 mL of 4.50 M NaOH(aq) is diluted with water to a volume of 750.0 mL, what is the molarity of the diluted NaOH(aq)? b) 0.150 M e) 1.35×10^3 M a) 0.0333 M c) 0.155 M d) 6.67 M
- 54. What is the definition of molality?
- a) moles of solute per kg of solvent
- b) grams of solute per kg of solution
- c) grams of solute per liter of solution
- d) moles of solute per liter of solvent
- e) moles of solute per liter of solution

55. If 18.4 g KCl is dis	solved in 2.50×10^{-10}	10^2 g H ₂ O, what is	the weight percent of	KCl in the solution?
a) 0.972%	b) 6.86%	c) 7.36%	d) 7.94%	e) 97.2%

56. If 355 g of ethanol (C₂H₅OH) is added to 645 g of water, what is the molality of the ethanol? a) 0.550 m b) 7.71 *m* c) 11.9 *m* d) 21.7 m e) 55.0 m

57. What is the molality of 7.59% by weight aqueous hydrochloric acid? The molar mass of HCl is 36.46 g/mol. a) 0.208 *m* 1.) 2.00 > 2 2 5 1) 2 76 > 2 00

b) 2.08 m	c) 2.25 m	d) 2.76 m	e) 2.99 m
-----------	-----------	-----------	-----------

58. What is the weight percent of acetic acid in 2.73 m CH ₃ CO ₂ H(aq)?					
a) 3.95 × 10 ⁻⁵ %	b) 0.0455%	c) 2.73%	d) 14.1%	e) 16.4%	

59. The weight percent of concentrated $HClO_4(aq)$ is 70.5% and its density is 1.67 g/mL. What is the molarity of concentrated HClO₄? a) 4.20 M b) 7.18 M c) 11.7 M d) 14.2 M e) 39.7 M

60. Concentrated sodium hydroxide is 19.4 M and has a density of 1.54 g/mL. What is the molality of concentrated NaOH?

a) 12.6 <i>m</i>	b) 19.8 <i>m</i>	c) 25.4 <i>m</i>	d) 29.9 <i>m</i>	e) 50.4 <i>m</i>
------------------	------------------	------------------	------------------	------------------

61. If the concentration of potassium carbonate in water is 210 ppm, what is the molarity of K₂CO₃(aq)? The molar mass of K₂CO₃ is 138.2 g/mol. Assume the density of the solution is 1.00 g/mL.

a) 1.5×10^{-3} M b) 3.4×10^{-3} M c) 2.9×10^{-2} M d) 3.4×10^{-2} M e) 0.66 M

62. A 25 meter by 10 meter pool of water has a depth of 2.5 meters. What mass of silver ion is present in the reservoir if the concentration of silver ion is 0.13 ppm? ($1 \text{ m}^3 = 1000 \text{ L}$; assume the density of the solution is 1.00 g/mL)

a) 2.1×10^{-4} g b) 7.5×10^{-1} g c) 4.8 g d) 8.8 g e) 81 g

63. What concentration of potassium chloride (in ppm) is present in 7.1×10^{-5} M KCl(aq)? For very dilute aqueous solutions, you can assume the solution's density is 1.0 g/mL. The molar mass of KCl is 74.55 g/mol.

a) 0.095 ppm b) 0.53 ppm c) 1.1 ppm d) 5.3 ppm e) 11 ppm

64. What mass of $Zn(NO_3)_2$ must be diluted to a mass of 1.00 kg with H₂O to prepare 97 ppm $Zn^{2+}(aq)$? a) 7.8×10^{-6} g b) 7.8×10^{-3} g c) 3.3×10^{-2} g d) 1.3×10^{-1} g e) 2.8×10^{-1} g

65. Ideally, colligative properties depend only on the

a) concentration of solute particles in a solution.

b) molar masses of the solute particles in a solution.

c) density of a solution.

d) hydrated radii of the molecules or ions dissolved in a solution.

e) partial pressure of the gases above the surface of a solution.

66. Which of the following aqueous solutions should have the lowest freezing point? a) pure H₂O b) 1 m MgBr₂ c) 1 m RbI d) 1 m NH₃ e) 1 m C₆H₁₂O₆

67. Which of the following aqueous solutions should have the highest boiling point? a) 0.50 m NaBr b) 0.50 m K_2 SO₄ c) 0.50 m CaBr_2 d) 1.0 m KCl e) 1.5 m C_6 H₁₂O₆

68. The freezing point depression constant for water is −1.86 °C/m. At what temperature will a solution containing 8.27 g CaCl₂ and 45.0 g H₂O begin to freeze? Assume that no ion-pairing occurs between Ca²⁺ and Cl².

a) -9.24 °C b) -4.62 °C c) -0.804 °C d) -0.749 °C e) +4.62 °C

- 69. What is the molar mass of a nonpolar molecular compound if 3.42 grams dissolved in 41.8 grams benzene begins to freeze at 1.17 °C? The freezing point of pure benzene is 5.50 °C and the freezing point depression constant, $K_{\rm fp}$, is -5.12 °C/*m*.
- a) 2.89 g/mol b) 69.2 g/mol c) 96.7 g/mol d) 126 g/mol e) 358 g/mol

70. What is the boiling point of a solution containing 0.80 g caffeine, $C_8H_{10}N_4O_2$, dissolved in 13.20 g benzene? The boiling point of pure benzene is 80.1 °C and the boiling point elevation constant, K_{bp} , is 2.53 °C/*m*.

a) 79.8 °C b) 80.4 °C c) 80.9 °C d) 85.2 °C e) 88.2 °C

71. What mass of Na₂SO₄ must be dissolved in 75.0 grams of water to lower the freezing point by 2.50 °C? The freezing point depression constant, $K_{\rm fp}$, of water is -1.86 °C/*m*. Assume the van't Hoff factor for Na₂SO₄ is 2.40.

a) 0.310 g b) 3.30 g c) 5.97 g d) 23.3 g e) 44.0 g

- 72. A 0.200 M K₂SO₄ solution is produced by _____.
- A) dilution of 250.0 mL of 1.00 M K₂SO₄ to 1.00 L
- B) dissolving 43.6 g of K₂SO₄ in water and diluting to a total volume of 250.0 mL
- C) diluting 20.0 mL of 5.00 M K₂SO₄ solution to 500.0 mL

D) dissolving 20.2 g of K_2SO_4 in water and diluting to 250.0 mL, then diluting 25.0 mL of this solution to a total volume of 500.0 mL

E) dilution of 1.00 mL of 250 M K₂SO₃ to 1.00 L

- 73. Which solution has the same number of moles of KCl as 75.00 mL of 0.250M solution of KCl?
- A) 20.0 mL of 0.200M solution of KCl
- B) 25.0 mL of 0.175*M* solution of KCl
- C) 129 mL of 0.145*M* solution of KCl
- D) 50.0 mL of 0.125M solution of KCl
- E) 100 mL of 0.0500M solution of KCl
- 74. A strong electrolyte is one that _____ completely in solution.
- A) reacts
- B) associates
- C) disappears
- D) ionizes

75. A weak electrolyte exists predominantly as ______ in solution.

- A) atoms
- B) ions
- C) molecules
- D) electrons
- E) an isotope

DO NOT MARK ON THIS QUESTION BOOKLET

76. What is the concentration (M) of a NaCl solution prepared by dissolving 9.3 g of NaCl in sufficient water to give 350 mL of solution?

A) 18

- B) 0.16
- C) 0.45 D) 27
- E) 2.7 × 10⁻²
- 77. What are the respective concentrations (M) of K^+ and PO_4^{3-} afforded by dissolving 0.800 mol K₃PO₄ in water and diluting to 1.63 L?
- A) 0.800 and 0.800
- B) 0.491 and 0.491
- C) 0.800 and 0.491
- D) 1.44 and 0.491
- E) 0.489 and 0.163
- 78. The molarity (M) of an aqueous solution containing 52.5 g of sucrose (C₁₂H₂₂O₁₁) in 35.5 mL of solution is _____.
- A) 5.46
- B) 1.48
- C) 0.104
- D) 4.32
- E) 1.85
- 79. How many grams of sodium chloride are there in 55.0 mL of a 1.90 M aqueous solution of sodium chloride?
- A) 0.105
- B) 6.11
- C) 3.21

D) 6.11×10^3

E) 12.2

80. How many grams of NaOH (MW = 40.0) are there in 500.0 mL of a 0.225 M NaOH solution?
A) 0.00219
B) 114
C) 14.0
D) 4.50
E) 0.113

81. There are	mol of bromide ions in 0.500 L of a 0.100 M solution of AlBr ₃ .
A) 0.0500	
B) 0.450	
C) 0.150	
D) 0.167	
E) 0.500	

DO NOT MARK ON THIS QUESTION BOOKLET

82. A solution is prepared by adding 1.60 g of solid NaCl to 50.0 mL of 0.100 M CaCl₂. What is the

molarity of chloride ion in the final solution? Assume that the volume of the final solution is 50.0 mL. A) 0.747

- B) 0.647
- C) 0.132
- D) 0.232
- E) 0.547

83. The phrase "like dissolves like" refers to the fact that _____.

A) gases can only dissolve other gases

B) polar solvents dissolve polar solutes and nonpolar solvents dissolve nonpolar solutes

C) solvents can only dissolve solutes of similar molar mass

D) condensed phases can only dissolve other condensed phases

E) polar solvents dissolve nonpolar solutes and vice versa

84. A saturated solution

A) contains as much solvent as it can hold

B) contains no double bonds

C) contains dissolved solute in equilibrium with undissolved solute

D) will rapidly precipitate if a seed crystal is added

E) cannot be attained

85. An unsaturated solution is one that _____.

A) has no double bonds

B) contains the maximum concentration of solute possible, and is in equilibrium with undissolved solute

C) has a concentration lower than the solubility

D) contains more dissolved solute than the solubility allows

E) contains no solute

86. A solution with a concentration higher than the solubility is ______.

A) is not possible

B) is unsaturated

C) is supercritical

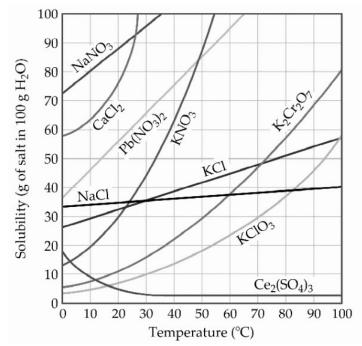
D) is saturated

E) is supersaturated

87. Which one of the following is least soluble in water?
A) CH₃OH
B) CH₃CH₂CH₂OH
C) CH₃CH₂CH₂OH
D) CH₃CH₂CH₂CH₂OH
E) CH₃CH₂CH₂CH₂CH₂OH

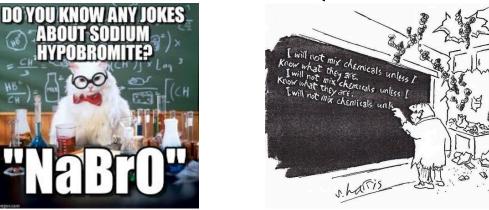
88. A solution contains 28% phosphoric acid by mass. This means that _____

- A) 1 mL of this solution contains 28 g of phosphoric acid
- B) 1 L of this solution has a mass of 28 g
- C) 100 g of this solution contains 28 g of phosphoric acid
- D) 1 L of this solution contains 28 mL of phosphoric acid
- E) the density of this solution is 2.8 g/mL


89. Calculate the molality of a 25.4% (by mass) aqueous solution of phosphoric acid (H3PO4).

- A) 2.59 m
- B) 3.47 m
- C) 4.45 m
- D) 25.4 m
- E) The density of the solution is needed to solve the problem.

90. Calculate the molarity of a 25.4% (by mass) aqueous solution of phosphoric acid (H3PO4).


- A) 2.59 m
- B) 3.47 m
- C) 4.45 m
- D) 25.4 m
- E) The density of the solution is needed to solve the problem.
- 91. A 1.35 m aqueous solution of compound X had a boiling point of 101.4°C. Which one of the following could be compound X? The boiling point elevation constant for water is 0.52°C/m.
 A) CH₃CH₂OH
- B) $C_6H_{12}O_6$
- C) Na₃PO₄
- D) KCl
- E) CaCl₂

DO NOT MARK ON THIS QUESTION BOOKLET

- 92. A sample of potassium nitrate (49.0 g) is dissolved in 101 g of water at 100°C, with precautions taken to avoid evaporation of any water. The solution is cooled to 30.0°C and no precipitate is observed. This solution is ______.
- A) hydrated
- B) placated
- C) saturated
- D) unsaturated
- E) supersaturated
- 93. A sample of potassium chlorate (15.0 g) is dissolved in 201 g of water at 70°C, with precautions taken to avoid evaporation of any water. The solution is cooled to 30.0°C and no precipitate is observed. This solution is ______.
- A) hydrated
- B) miscible
- C) saturated
- D) unsaturated
- E) supersaturated
- 94. A sample of potassium nitrate (49.0 g) is dissolved in 101 g of water at 100°C, with precautions taken to avoid evaporation of any water. The solution is cooled to 30.0°C and a small amount of precipitate is observed. This solution is
- A) hydrated
- B) placated
- C) saturated
- D) unsaturated
- E) supersaturated

M.Ray 1. EXAM Booklet - STATE Chem Lab 2022 - 100 Q - 12APR22_V2.7 FINAL.docx University of Wisconsin-Stout

- 95. The solubility of MnSO4 monohydrate in water at 20°C is 70.0 g per 100.0 mL of water. A solution at 20°C that is 4.22 *M* in MnSO4 monohydrate is best described as a(n) ______ solution. The formula weight of MnSO4 monohydrate is 168.97 g/mol.
- A) hydrated
- B) solvated
- C) saturated
- D) unsaturated
- E) supersaturated

96. A solution is prepared by dissolving 23.7 g of CaCl₂ in 375 g of water. The density of the resulting

solution is 1.05 g/mL. The concentration of Cl⁻ in this solution is ______ M.

- A) 0.214
- B) 0.562
- C) 1.12
- D) 1.20
- E) 6.64 × 10⁻²
- 97. What is the molality of sodium chloride in solution that is 13.0% by mass sodium chloride and that has a density of 1.10 g/mL?
- A) 2.23
- B) 1.30
- C) 2.56
- D) 2.03
- E) 1.10
- 98. What is the freezing point (°C) of a solution prepared by dissolving 11.3 g of Ca(NO₃)₂ (formula weight = 164 g/mol) in 115 g of water? The molal freezing point depression constant for water is 1.86°C/m.
- A) -3.34
- B) -1.11
- C) 3.34
- D) 1.11
- E) 0.00

- 99. A solution containing 20.0 g of an unknown liquid and 110.0 g water has a freezing point of -1.32 °C. Given $K_f = 1.86$ °C/m for water, the molar mass of the unknown liquid is _____g/mol.
- A) 256
- B) 69.0
- C) 333
- D) 619
- E) 78.1
- 100. George is making spaghetti for dinner. He places 4.01 kg of water in a pan and brings it to a boil. Before adding the pasta, he adds 58 g of table salt (NaCl) to the water and again brings it to a boil. The temperature of the salty, boiling water is ______°C.

Assume a pressure of 1.00 atm and negligible evaporation of water. Kb for water is 0.52°C/m.

- A) 99.87
- B) 100.26
- C) 100.13
- D) 99.74
- E) 100.00

